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This paper describes a modeling method for closed-loop unsteady fluid transport systems based on 1-D
unsteady Euler equations with nonlinear forced periodic boundary conditions. A significant feature of this
model is the incorporation of dynamic constraints on the variables that control the transport process at the
system boundaries as they often exist in many transport systems. These constraints result in a coupling of the
Euler equations with a system of ordinary differential equations that model dynamics of auxiliary processes
connected to the transport system. Another important feature of the transport model is the use of the non-
conservation form instead of the flux-conserved form. This form lends itself to modeling with measurable
conserved fluid transport variables and represents an intermediate model between the primitive variable ap-
proach and the conserved variable approach. A wave-splitting finite-difference upwind method is presented as
a numerical solution of the model. An iterative procedure is implemented to solve the nonlinear forced periodic
boundary conditions prior to the time-marching procedure for the upwind method. A shock capturing method
to handle transonic flow for the non-conservation form of the Euler equations is presented. A closed-loop wind
tunnel is used for demonstration of the accuracy of this modeling method.

I. Introduction

A transport system is a system that carries information from one point to another point within the system. Examples
of transport systems are numerous such as fluid flow in gas distribution pipelines,1 air traffic systems,2 highway traffic
systems,3 just to name a few. The underlying mathematical principle of a transport system is the hyperbolic partial
differential equation which models such a system as a continuum whose information varies in space and time.4 This
equation is used to model a wave propagation behavior in many transport systems since information is carried from
one point to another point within the continuum by wave actions. Associated with the hyperbolic partial differential
equation are a number of boundary conditions that specify the configurations of these systems. If the information is
carried in one direction without returning to its starting position, then we say that the system is open-loop. An example
of an open-loop transport system is gas flow through an aircraft engine. On the other hand, if the information returns
to its starting position, then the system is said to be closed-loop. An example of a closed-loop transport system is
the circulatory system in a biological system. The flow of information is usually supplied at the system boundary
by a forced process that provides a motive force to move the information along the way. A common device for
accomplishing this objective in fluid transport systems is a pump which supplies a positive pressure wave to displace
the fluid volume in the flow direction. In this study, we will focus on such a closed-loop fluid transport system that
is energized by a positive-displacement device such as a turbomachinery compressor. While the focus is on a fluid
transport system, the underlying principle is sufficiently general for other types of transport systems. This study is
motivated by the need for modeling a closed-loop wind tunnel system which is a good example of a closed-loop
transport system.

The paper presents the development of a computational hyperbolic model for a closed-loop fluid system based on
the 1-D unsteady Euler equations. The hyperbolic model is an intermediate model between the conservation form and
the non-conservation form that affords a certain advantage for continuous flow with dissipation and varying area. A
nonlinear forced periodic boundary condition is imposed on the model to describe a forced process that generate the
flow of information. This boundary condition in turn is coupled to a system of ordinary differential equations that
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represent dynamics of auxiliary systems that actually drive the information flow in the closed-loop system. We also
present an explicit scheme of a wave-splitting, finite-difference upwind method for solving this hyperbolic model. The
computational results for a closed-loop wind tunnel model show a very good agreement with experimental data.

II. Closed-Loop Transport Model

A. Hyperbolic Equations in Non-Conservation Form

Fluid transport phenomena are governed by the conservation laws of mass, momentum, and energy. These equations
are hyperbolic in nature. For 1-D internal flow, the governing unsteady Euler equations are expressed in a conservation
form as5

∂U

∂t
+
∂F (U, x)

∂x
+ Q (U, x) = 0 ∀x ∈ [0, L] , t ∈ [0, T ] (1)

where U (x, t) : [0, L] × [0, T ] → Rn is a vector of transport variables with n = 3, F (U, x) is a flux vector of
conserved quantities, andQ (U, x) is non-homogeneous dissipative source term. In the vector form,U, F, andQ are
defined as

U (x, t) =






ρA

ρuA

ρAcvT + 1
2ρu

2A




 , F (U, x) =






ρuA

ρu2A + pA

ρuAcpT + 1
2ρu

3A




 , Q (U, x) =






0

−pdA
dx + 1

2ρu
2A f

D

− dQ
dx






(2)
where ρ is the density, p is the pressure, u is the flow speed, T is the temperature, A(x) is the varying flow area, f
is the friction factor, D is the hydraulic diameter, dQ

dx is the heat transfer gradient, cv is the constant-volume specific
heat, and cp is the constant-pressure specific heat.

Equation (1) admits a continuous solution as well as a discontinuous solution that describes the evolution of a
shock discontinuity which requires Eq. (1) to be cast in a weak form in order to handle the infinite spatial derivative of
the flux vector through the shock. The weak form solution relates the information on either side of the discontinuity
by the integral form of Eq. (1) which results in the well-known Rankine-Hugoniot relations.6

Suppose the vectorU can be expressed as a function of some flow variables y so that

U (x, t) = U (y (x, t)) (3)

Then by explicit differentiation, Eq. (1) can be rewritten in a non-conservation form as

∂y

∂t
+ A (y, x)

∂y

∂x
+ B (y, x) = 0 (4)

where A (y, x) : Rn × [0, L] → Rn × Rn is a characteristic matrix and B (y, x) : Rn × [0, L] → Rn is a non-
homogeneous dissipative source term such that

A =

(
∂U

∂y

)−1 (
∂F

∂U

)(
∂U

∂y

)
(5)

B =

(
∂U

∂y

)−1 (
∂F

∂x
+ Q

)
(6)

Equation (4) is a system of first order, quasilinear strictly hyperbolic equations due to the fact that the matrix A

has n real, distinct eigenvalues such that

λ1 (A) < λ2 (A) < · · · < λn (A) (7)

for all y (x, t) ∈ Rn, x ∈ [0, L], and t ∈ [0, T ]. Under this condition, the matrixA is diagonalizable using a similarity
transformation

A = ΦΛΦ−1 (8)

whereΦ is an matrix of the right eigenvectors andΛ is a diagonal matrix of the right eigenvalues ofA
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Λ =




u + c 0 0

0 u 0

0 0 u − c



 (9)

with c as the speed of sound.
The eigenvalues are the acoustic wave speeds of the fluid transport systems and the direction of the wave prop-

agation is called a characteristic direction. For subsonic transport, the information in the fluid medium is carried in
both the upstream and downstream directions by one upstream wave speed u − c and two downstream wave speeds
u and u + c. Since x ∈ [0, L], then for the information to be transported in the upstream direction, data must exist
at the boundary x = L. Similarly, data must also exist at the boundary x = 0 in order for information to be carried
downstream in the flow. The number of upstream and downstream boundary conditions must match the number of
upstream and downstream wave speeds. This is known as the boundary condition compatibility.

Premultiplying Eq. (4) byΦ−1, we obtain the characteristic form of the hyperbolic partial differential equation

Φ−1yt + ΛΦ−1yx + Φ−1B = 0 (10)

Equations (1) and (4) are completely equivalent, but there are significant differences in the numerical implemen-
tation of these equations. The conservation form of Eq. (1) yields a solution that is conserved throughout the domain
of x, resulting in a correct steady state solution. For example, examining the first row of Eq. (1), it is clear that the
steady state solution requires that the mass flux variable ρuA be constant with respect to x. This is a well-known
result in fluid mechanics. In the numerical implementation, this mass flux conservation is incorporated directly into
the solution method in order to guarantee that the general time unsteady solution will converge to the correct steady
state solution.7

On the other hand, the hyperbolic non-conservation form of Eq. (4) can take on a wide range of expressions, some
of which are more advantageous than others from a numerical implementation standpoint. For example, one common
non-conservation form of Eq. (4) is

∂

∂t






p

u

c2




 +






u γp 0
c2

γp u 0

0 (γ − 1) c2 u





∂

∂x






p

u

c2




 +






γpu dA
Adx

− (γ−1)γpu3

2c2
f
D

− γ−1
A

dQ
dx

u2

2
f
D

(γ − 1) c2u dA
Adx

− (γ−1)γu3

2
f
D

− (γ−1)c2

pA
dQ
dx




 =






0

0

0






(11)
where γ is the specific heat ratio. In this form, the variables p, u, and c2 are called primitive variables or basic variables.

The right eigenvector matrixΦ for Eq. (11) is computed as

Φ =





γp
(γ−1)c2 0 γp

(γ−1)c2

1
(γ−1)c 0 − 1

(γ−1)c

1 1 1



 (12)

Then the characteristic form of Eq. (11) becomes




(γ−1)c2

2γp
∂p
∂t

+ (γ−1)c
2

∂u
∂t

− (γ−1)c2

γp
∂p
∂t

+ ∂c2

∂t
(γ−1)c2

2γp
∂p
∂t

− (γ−1)c
2

∂u
∂t



 +




u + c 0 0

0 u 0

0 0 u − c









(γ−1)c2

2γp
∂p
∂x

+ (γ−1)c
2

∂u
∂x

− (γ−1)c2

γp
∂p
∂x

+ ∂c2

∂x
(γ−1)c2

2γp
∂p
∂x

− (γ−1)c
2

∂u
∂x





+





(γ−1)c2u
2

dA
Adx + (γ−1)c2u2−(γ−1)2cu3

4c
f
D − (γ−1)2c2

2γpA
dQ
dx

− (γ−1)u3

2
f
D − (γ−1)c2

γpA
dQ
dx

(γ−1)c2u
2

dA
Adx − (γ−1)c2u2+(γ−1)2cu3

4c
f
D − (γ−1)2c2

2γpA
dQ
dx



 =




0

0

0



 (13)

The three characteristic directions are defined by
(

dx
dt

)
1,2,3

= u ± c, u such that on these characteristic directions,
the total derivative of a quantity is computed as

(
d

dt

)

i

=
∂

∂t
+

(
dx

dt

)

i

∂

∂x
(14)
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where i = 1, 2, 3 denotes the characteristic direction.
Therefore, we can write out Eq. (13) as

c

γp

(
dp

dt

)

1,2

±

(
du

dt

)

1,2

+ cu
dA

Adx
±

cu2 ∓ (γ − 1)u3

2c

f

D
−

(γ − 1) c

γpA

dQ

dx
= 0 (15)

−
1

p

(
dp

dt

)

3

+
γ

(γ − 1) c2

(
dc2

dt

)

3

−
γu3

2c2

f

D
−

1

pA

dQ

dx
= 0 (16)

We recall that the entropy of a perfect gas is defined as

ds =
γR

γ − 1

dT

T
− R

dp

p
= R

(
γ

γ − 1

dc2

c2
−

dp

p

)
(17)

Then, substituting Eq. (17) into Eq. (16) yields
(

ds

dt

)

3

=
u3

2T

f

D
+

1

ρTA

dQ

dx
≥ 0 (18)

From Eq. (15), it can be seen that the pressure and flow speed propagate at wave speeds u ± c, while Eq. (18)
shows that the entropy propagates at a wave speed u. Equation (18) also implies an important thermodynamic property
that, for an adiabatic flow, the friction factor must be positive to ensure that entropy change is positive according to
the second law of thermodynamics. For a perfect gas, the isentropic relationship between the density and pressure is
expressed as

ρ

ρ0
=

(
p

p0

) 1
k

(19)

We substitute Eq. (19) into Eq. (15) and then integrate the resulting equation along with Eq. (18). Upon simplifi-
cation, we get (

u ±
2c

γ − 1

)

1,3

=

∫ [
∓cu

dA

Adx
−

cu2 ∓ (γ − 1)u3

2c

f

D
±

(γ − 1) c

γpA

dQ

dx

]
dt (20)

(s)2 =

∫
R

(
γu3

2c2

f

D
+

1

pA

dQ

dx

)
dt (21)

For inviscid, adiabatic flow with a constant area, we see that the integral terms in the right hand sides of Eqs. (20)
and (21) vanish, thus rendering the expressions on the left hand sides constant. As a result, the expressions on the
right hand sides u ± 2c

k−1 and s are the well-known Riemann invariants which are conserved along the characteristic
directions

(
dx
dt

)
1,2,3

= u ± c, u for inviscid, adiabatic flow.6 For viscous flow, these Riemann invariants are no longer
conserved along the characteristic directions. However, the Riemann invariant concept is important in studying shock
capturing methods that involve discontinuous solutions.

The conservation form of Eq. (1) is very popular in computational fluid dynamics because it addresses the con-
servation laws directly for flow with shock discontinuities. On the other hand, the hyperbolic non-conservation form
of Eq. (4) using the primitive variables such as Eq. (11) in general does not necessarily preserve the conservation
features of the transport physics because the flux variables as reconstructed from the primitive variables may not be
necessarily conserved. However, the advantage of using conservation form is not without a trade-off. The fact that the
momentum flux variable is usually not a directly measurable quantity can potentially result in an increased complexity
in formulating numerical methods for certain physical applications wherein the boundary conditions are specified in
terms of directly measurable quantities.

From Eq. (1), we note that the mass flux variable is the same as the mass flow ṁ = ρuA in a 1-D flow, and the
energy flux variable takes on the meaning of the enthalpy ṁcpT0 of the fluid, where T0 is the stagnation temperature.
Since the mass flow is always conserved, the stagnation temperature therefore is also conserved for an adiabatic process
and thus is proportional to the energy flux variable. On the other hand, the momentum flux variable is generally not
conserved for shock free, inviscid flow with a varying area. Instead, we can replace the momentum flux variable
with the stagnation pressure p0 as a variable that is generally conserved for shock free, inviscid flow. Thus, this leads
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us to consider the following hyperbolic form in terms of the mass flow, the stagnation pressure, and the stagnation
temperature

∂

∂t




ṁ

p0

T0



 +






u pA
p0

ṁu
2T0

ρ0c2

ρA u
[
1 − (γ−1)T

T0

]
ρ0c2u

T0

(γ−1)T
ρA

− (γ−1)2uT
γp0

u
[
1 + (γ−1)T

T0

]





∂

∂x




ṁ

p0

T0





+





ṁu
2

f
D

ρ0u3

2

(
T0
T

− γ + 1
)

f
D

−
ρ0c2u(2−M2)

2ṁcpT
dQ
dx

− (γ − 1)uT f
D

(
T0
T − 1

)
− γu

ṁcp

dQ
dx



 =




0

0

0



 (22)

where ρ0 is the stagnation density andM is the Mach number.
Equation (22) represents an intermediate model between the conservation form of Eq. (1) and the hyperbolic non-

conservation form with primitive variables as in Eq. (11). In this form, the steady state solution is governed by the
following equation

dy

dx
= −C (y, x) (23)

where

C (y, x) = A−1 (y, x)B (y, x) =





0
γp0M2

2

(
f
D + 1

ṁcpT0

dQ
dx

)

− 1
ṁcp

dQ
dx



 (24)

It is obvious from Eq. (23) that the mass flow is identically conserved along the x direction. For fluid transport
without friction and heat transfer, the stagnation pressure and stagnation temperature are also conserved along the
x direction. The eigenvalues of the matrix A in both Eqs. (11) and (22) are equal to the values in Eq. (9), thus
demonstrating the invariant transformation of these equations. Equation (22) affords a certain advantage over the
conservation form of Eq. (1) for subsonic flow in that it uses measurable quantities as variables from the boundary
conditions that can significantly simplify computational methods.

B. Forced Periodic Boundary Conditions and Dynamic Constraints

In a closed-loop transport system, information is carried from one point to another point and then returned back to
the starting position as illustrated in Fig. 1. To enable this information recirculation, a positive-displacement device
must be embedded at the boundaries of the system. For subsonic transport, two boundary conditions at x = 0 and one
boundary condition at x = L are required. For supersonic transport, three boundary conditions at x = 0 are required.
For a closed-loop system, the boundary conditions at x = 0 are affected by the boundary conditions at x = L since
the information must be returned to its starting position. Thus, in general for a closed-loop system, we consider the
following nonlinear forced periodic boundary condition for Eq. (4)

y (0, t) = g (y (L, t) ,u) ∀t ∈ [0, T ] (25)

where u (t) : [0, T ] → Rm in class C1 is a boundary control vector, and g (y (L, t) ,u) : Rn × Rm → Rn is a
forcing function that relates the transport state vectors at x = 0 and x = L and the boundary control vector u. For
a well-posed problem, we require that the boundary condition (25) be non-characteristic such that g (y (L, t) ,u) is
nowhere tangential to any of the characteristic curves of Eq. (10).
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Fig. 1 - Closed-Loop Transport System

To ensure the boundary condition compatibility for all signs of the eigenvalues ofA, the Jacobian of g with respect
to y (L, t) is required to be full rank or

dim
∂g

∂y (L, t)
= n (26)

where n = 3 is the number of the eigenvalues.
To see this, we let n+ and n− be the numbers of the positive and negative eigenvalues, respectively. If n+ = n, the

from Eq. (25), there are n+ independent boundary conditions for y (0, t) that correspond to n+ positive eigenvalues.
Thus, the compatibility for the positive eigenvalues is satisfied. If n− = n, then from Eqs. (25) and (26), there are n−

independent boundary conditions with y (L, t) that correspond to n− negative eigenvalues. The compatibility for the
negative eigenvalues is thus satisfied. If 0 < n+ < n, we choose n+ independent boundary conditions with y (0, t)
corresponding to n+ positive eigenvalues. Then, From (26), there are n− remaining boundary conditions with y (L, t)
corresponding to n− negative eigenvalues. Thus, the compatibility for the mixed-sign eigenvalues is satisfied.

The boundary condition (25) provides a control action to maintain the flow of information in a closed-loop system
by the boundary control vector u. In practice, the boundary control vector u ends up being controlled by an auxiliary
process that dictates dynamic constraints on the boundary control action. Therefore, in general, we consider the
dynamic constraints on the boundary control in Eq. (25) to be governed by a system of ordinary differential equations
as follows

u̇ = f (y (0, t) ,y (L, t) ,u,v) ∀t ∈ [0, T ] (27)

where v (t) ∈ L2 [0, T ] → Rl is an auxiliary control vector and f (y (0, t) ,y (L, t) ,u,v) : Rn×Rn×Rm×Rl → Rm

is a transition function of the auxiliary process.
Equation (27) describes the time-varying process of the boundary control as influenced by the dynamics of the

auxiliary process encapsulated by the transition function f and the auxiliary control vector v. The coupling with Eq.
(1) is due to the existence of the transport state vectors y (0, t) and y (L, t) at the system boundaries.

To completely describe the problem, both Eqs. (4) and (27) are given the following initial conditions

y (x, 0) = h (x) (28)

u (0) = u0 (29)

where h is the steady state solution of Eq. (23) at the initial time. For a well-posed mixed initial-boundary value
problem, the initial conditions (28) and (29) must be compatible with the boundary condition (25) such that

h (0) = g (h (L) ,u0) (30)

The problem is now posed as follows: given a closed-loop transport system initially at an equilibrium defined by
the steady state solution h (x), we would like to adjust the auxiliary control v (t) so as to move the system to a new
equilibrium at some later time. We are interested in the evolution of the fluid transport properties during this process.
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III. Computational Method

Computation methods for hyperbolic partial differential equations are generally based on a finite-difference ap-
proach. There are several methods of spatial discretization used in finite difference methods that are designed to
address numerical requirements of consistency, stability, and convergence. Briefly, the consistency requirement ex-
presses that the discretized equations should tend to the differential equations to which they are related when ∆t and
∆x tend to zero. The stability requirement states that solutions must be bounded from one time step to another. The
convergence requirement asserts that numerical solutions should approach their exact solutions throughout the solu-
tion domains when ∆t and ∆x tend to zero. For a well-posed mixed initial-boundary value problem, stability is the
necessary and sufficient condition for convergence.8

A. Wave-Splitting Upwind Scheme

The simplest type of spatial discretization for a first-order, hyperbolic PDE is the first-order upwind finite-difference
method. In flow with shocks, spatial discretization may not have sufficient stability requirements and could cause
numerical oscillations at the discontinuities. Various spatial discretization schemes such as the Lax-Wendroff method
incorporate an artificial viscosity to dampen these numerical oscillations. For the conservation laws with the dissipative
source term B in Eq. (4), the friction factor f provides a natural viscosity for the numerical solutions so that an
artificial viscosity may not be needed. From Eq. (9), we see that the eigenvalue u − c is positive for supersonic flow
and negative for subsonic flow. Thus for supersonic flow, Eq. (4) can be readily solved using the positive-wave upwind
finite-difference method. For subsonic flow, however, we employ a wave-splitting, upwind finite-difference method to
account for the mixed-sign eigenvalues.

For mixed-sign eigenvalues when u < c, the matrixA can also be splitted into a semi-positive definite matrix and
a semi-negative definite matrix as

A = A+ + A− (31)

where
A+ = ΦΛ+Φ−1 (32)

A− = ΦΛ−Φ−1 (33)

with

Λ+ =




u + c 0 0

0 u 0

0 0 0



 ≥ 0 ∀t ∈ [0, T ] (34)

Λ− =




0 0 0

0 0 0

0 0 u − c



 ≤ 0 ∀t ∈ [0, T ] (35)

The characteristic equation (10) can be written in a wave-splitting form as

Φ−1yt + Λ+Φ−1yx + Λ−Φ−1yx + Φ−1B = 0 (36)

Equation (36) is now discretized using a wave-splitting, first-order upwind finite-difference method as

Φ−1ẏi + Λ+Φ−1 yi − yi−1

∆x
+ Λ−Φ−1 yi+1 − yi

∆x
+ Φ−1B = 0 (37)

where i = 2, 3, . . . , m − 1 denotes the index of the interior points not on the boundary such that xi = i−1
m−1L and

yi (t) = y (xi, t).
The following question is posed: at what grid point do we want to evaluateΦ−1, Λ+,Λ−, andB? To help answer

this question, we examine the discretized form of the steady state equation (23) using a first-order spatial discretization

A (yi−1, xi−1)
yi − yi−1

∆x
+ B (yi−1, xi−1) = 0 (38)

This form is an explicit spatial discretization which yields a simple method for computing the steady state solution
of Eq. (23). We see thatA andB are evaluated at a prior grid point with respect to the discretization of yx. In order for
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Eq. (37) to converge to the steady state solution based on the discretization scheme in Eq. (38), we need to maintain
a numerical consistency between the steady state form and the hyperbolic form. This is done by evaluating all the
matrices in Eq. (37) at a prior grid point for the positive wave speeds and at a current grid point for the negative wave
speed. Using this approach, Eq. (37) can be decomposed into scalar equations as

Ψ1 (yi−1, xi−1) ẏi + (ui−1 + ci−1)Ψ1 (yi−1, xi−1)
yi − yi−1

∆x
+ Ψ1 (yi−1, xi−1)B (yi−1, xi−1) = 0 (39)

Ψ2 (yi−1, xi−1) ẏi + ui−1Ψ2 (yi−1, xi−1)
yi − yi−1

∆x
+ Ψ2 (yi−1, xi−1)B (yi−1, xi−1) = 0 (40)

Ψ3 (yi, xi) ẏi + (ui − ci)Ψ3 (yi, xi)
yi+1 − yi

∆x
+ Ψ3 (yi, xi)B (yi, xi) = 0 (41)

whereΨk (yi, xi), k = 1, 2, 3, is the k-th 1 × 3 row vector of the matrixΦ−1 (yi, xi).
We now combine Eqs. (39) to (41) into a vector form as

ẏi + A+
i−1

yi − yi−1

∆x
+ A−

i

yi+1 − yi

∆x
+ B+

i−1 + B−
i = 0 (42)

with
A+

i−1 = Ψ−1Λ+ (yi−1, xi−1)Ψ (43)

A−
i = Ψ−1Λ− (yi, xi)Ψ (44)

B+
i−1 = Ψ−1




Ψ1 (yi−1, xi−1)B (yi−1, xi−1)

Ψ2 (yi−1, xi−1)B (yi−1, xi−1)

0





3×1

(45)

B−
i = Ψ−1




0

0

Ψ3 (yi, xi)B (yi, xi)





3×1

(46)

where

Ψ =




Ψ1 (yi−1, xi−1)

Ψ2 (yi−1, xi−1)

Ψ3 (yi, xi)





3×3

(47)

We note that in general wave-splitting schemes are less conservative than flux-splitting schemes which better
preserve the conservation laws across shock waves. However, for continuous subsonic flow, the wave splitting schemes
can yield good results. In particular, the wave-splitting scheme in Eq. (42) ensures that the time evolution of the
hyperbolic solution will converge to the correct steady state solution if it is also discretized in the same manner.
Comparing this method of wave-splitting scheme with a well-known scheme, the difference is that the matricesA+

i−1

andA−
i are evaluated at a prior grid point for the positive wave speeds and at a current grid point for the negative wave

speed. In contrast, a standard wave-splitting scheme typically employs a half-point method such as

A+
i− 1

2
= A+

(
yi−1 + yi

2
,
xi−1 + xi

2

)
(48)

A−
i+ 1

2
= A−

(
yi + yi+1

2
,
xi + xi+1

2

)
(49)

B. Stability Analysis

In the presence of the non-homogeneous source vector B, the stability of the upwind finite difference method could
be impacted depending upon the magnitude ofB. Global stability of nonlinear differential equations is very desirable,
but in many cases it can be difficult to evaluate. Lyapunov stability theory has been used for determining global
stability of nonlinear differential equations. Nonetheless, finding a Lyapunov function for a nonlinear system can
be quite daunting and the failure of finding one does not necessarily imply that the system is unstable. Most often,
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local stability of a nonlinear differential equation can be inferred from global stability of the linearization about an
equilibrium. Suppose yi is the steady state solution of Eq. (38), then for every yi ∈ Rn there exists a small variation
ỹi around the neighborhood of yi such that if ỹi is bounded throughout the neighborhood of yi, then ỹi is globally
stable. Global stability of ỹi implies local stability of yi.

SupposeA+
i−1,A

−
i ,B

+
i−1, andB−

i are locally Lipschitz with respect to yi−1 and yi, then to obtain ỹi, we linearize
Eq. (42) as

˙̃yi + A+
i−1

ỹi − ỹi−1

∆x
+ A+

i−1,yi

(
yi − yi−1

∆x

)
ỹi + A+

i−1,yi−1

(
yi − yi−1

∆x

)
ỹi−1

+ A−
i

ỹi+1 − ỹi

∆x
+ A−

i,yi

(
yi+1 − yi

∆x

)
ỹi + A−

i,yi−1

(
yi+1 − yi

∆x

)
ỹi−1

+
(
B+

i−1,yi
+ B−

i,yi

)
ỹi +

(
B+

i−1,yi−1
+ B−

i,yi−1

)
ỹi−1 = 0 (50)

Since yi is a steady state solution, then it follows that

yi+1 − yi

∆x
= −Ci (51)

whereCi = A−1 (Yi, xi)B (Yi, xi) as defined in Eq. (23). Equation (50) then becomes

˙̃yi + A+
i−1

ỹi − ỹi−1

∆x
+ A−

i

ỹi+1 − ỹi

∆x
+

(
B+

i−1,yi
+ B−

i,yi
− A+

i−1,yi
Ci−1 − A−

i,yi
Ci

)
ỹi

+
(
B+

i−1,yi−1
+ B−

i,yi−1
− A+

i−1,yi−1
Ci−1 − A−

i,yi−1
Ci

)
ỹi−1 = 0 (52)

The termA+
i−1,yi

Ci−1 is evaluated at yi−1 and yi as

A+
i−1,yi

Ci−1 =
[

A+
i−1,y1,i

Ci−1 A+
i−1,y2,i

Ci−1 A+
i−1,y3,i

Ci−1

]

3×3
(53)

where the subscript yj , j = 1, 2, 3 denotes the partial derivative with respect to the scalar quantity yj . All the other
termsA−

i,yi
Ci,A+

i−1,yi−1
Ci−1, andA−

i,yi−1
Ci in Eq. (52) are then evaluated in the same manner.

If yi is smooth and∆x is a small number, then it may be assumed thatA−
i ) A−

i−1,Ai−1,yiCi−1 ) A+
i−1,yi

Ci−1+

A−
i,yi

Ci, andBi−1,yi ) B+
i−1,yi

+ B−
i,yi
. Furthermore, we recognize that

A−1
i−1Ai−1,yiCi−1 + A−1

i−1,yi
Ai−1Ci−1 = 0 ⇒ Ai−1,yiCi−1 = −Ai−1A

−1
i−1,yi

Bi−1 (54)

Then, it follows that

Bi−1,yi − Ai−1,yiCi−1 = Ai−1

(
A−1

i−1Bi−1,yi + A−1
i−1,yi

Bi−1

)
= Ai−1Ci−1,yi (55)

We now can simplify Eq. (52) as

˙̃yi + A+
i−1

ỹi − ỹi−1

∆x
+ A−

i−1

ỹi+1 − ỹi

∆x
+ Ai−1Ci−1,yi ỹi + Ai−1Ci−1,yi−1 ỹi−1 ) 0 (56)

where

Cy =
kp0M

2

1 − M2





0 0 0
1
ṁ

(
T0f
TD

+ 1+kM2

2ṁcpT0

dQ
dx

)
− 1+kM2

2p0

(
f
D

+ 1
ṁcpT0

dQ̄
dx

)
1

2T0

(
T0f
TD

+ (k+1)M2

2ṁcpT0

dQ
dx

)

1−M2

kp0M2ṁ2cp

dQ
dx

0 0



 (57)

Equation (56) can be written in a form
Ẋ = SX + V (58)
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whereX =
[

ỹ2 ỹ3 · · · ỹm−1

]T

,V =
[ (

A+
1

∆x
− A1C1,y1

)
ỹ1 0 · · · −

A−

m−2

∆x
ỹm

]T

,

S =





− |A1|
∆x

− A1C1,y2 −A−

1
∆x

· · · 0

A+
2

∆x − A2C2,y2 − |A2|
∆x − A2C2,y3 −A−

2
∆x

...
... 0

. . . −
A−

m−3

∆x

0 · · ·
A+

m−2

∆x
− Am−2Cm−2,ym−2 − |Am−2|

∆x
− Am−2Cm−2,ym−1





(59)
and |Ai| = A+

i − A−
i .

For a homogeneous solution for which Z = 0, Eq. (58) is stable if the eigenvalues of S are negative, thereby
implying that Eq. (42) is locally stable about its equilibrium. The effect of the non-homogeneous term Z on the
stability will be discussed later. If yi is smooth and∆x is small, then the eigenvalues of S are computed to be

λ (S) = λ

(

−
|Ai|

∆x
− AiCi,yi ±

[
−

A−
i

∆x

(
A+

i

∆x
− AiCi,yi

)] 1
2
)

(60)

where λ (∗) denotes the eigenvalue operation on * and the square root operation of the matrix can be computed using
a singular value decomposition.

Using the fact thatA−
i A+

i = 0 andA−
i Ai = A−

i A−
i , then Eq. (60) can be simplified as

λ (S) = λ

(

−A+
i

(
I

∆x
+ Ci,yi

)
+ A−

i

[
I

∆x
− Ci,yi ±

(
Ci,yi

∆x

) 1
2

])

(61)

For stability, we require that λ (S) < 0. SinceA+
i ≥ 0 andA−

i ≤ 0, this implies that

I

∆x
+ Ci,yi > 0 (62)

I

∆x
− Ci,yi ±

(
Ci,yi

∆x

) 1
2

> 0 (63)

where I is the identity matrix. Since λ (Cy) ≤ 0, this implies thatCi,yi ≤ 0. Eq. (63) then has an imaginary part, so
we only require that the real part be positive definite. BecauseCi,yi ≤ 0, Eq. (63) is satisfied for all∆x. On the other
hand, Eq. (62) places a restriction on∆x which must satisfy

∆x <
1

max |λ (Ci,yi)|
(64)

where

max |λ (Cy)| =
kM2

(
1 + kM2

)

1 − M2

(
f

D
+

1

ṁcpT0

dQ̄

dx

)
(65)

We see that the presence of the non-homogeneous source termB in Eq. (4) affects the stability of the wave-splitting
scheme in Eq. (42) which requires that∆x be less than the reciprocal of the largest absolute eigenvalue ofCi,y. Thus
far, we have not considered the effect of the non-homogeneous term Z. It is obvious that the stability of Eq. (58) also
requires that Z is bounded in t ∈ [0, T ]. We assume that the functions g (y (L, t) ,u) and f are locally Lipschitz with
respect to y1 (t) = y (0, t), ym (t) = y (L, t), and u. If u ∈ Rm is the steady state solution of Eq. (27), then there
exists a small variation ũ around the neighborhood of u such that if ũ is bounded throughout the neighborhood of u,
then ũ is globally stable. Linearization of Eqs. (25) and (27) result in

V =
[ (

A+
1

∆x
− A1C1,y1

)
(gym ỹm + guũ) 0 · · · −

A−

m−1

∆x
ỹm

]T

(66)

˙̃u = fuũ + fy1 ỹ1 + fym ỹm + fVṽ (67)
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The non-homogeneous term Z is bounded if Eq. (67) is globally stable. Since V is measurable in L2, then ṽ is
also measurable in L2. The local stability of Eq. (27) then requires the global stability of Eq. (67) which implies that
the eigenvalues of fu are negative in order to ensure that the non-homogeneous term Z is always bounded in t ∈ [0, T ].
Thus, the additional requirement for the wave-splitting scheme is

λ (fu) < 0 (68)

We have thus shown that the wave-splitting scheme in Eq. (42) is stable under certain requirements. To implement
the complete computational procedure, we must also address the nonlinear dynamic constraint equation (27) which
can be discretized as

u̇ = f (y1,ym,u,V) (69)

Equations (42) and (69) are subject to the following initial conditions

yi (0) = h (xi) (70)

u (0) = u0 (71)

Both these equations can be integrated using any standard ODE numerical methods such as the Euler’s method
or the Runge-Kutta method. We note that because of the nonlinear forced periodic boundary condition (25) and the
quasi-linearity of Eq. (4), Eqs. (42) and (69) must be discretized in time using an explicit scheme. For an Euler’s
method, the time step must be chosen to satisfy the following condition

∆t ≤ min

{
∆x

max [(1 + αi) (ui + ci)]
,

2

max |λ (fu)|

}
(72)

The first condition is the Courant-Friedrichs-Levy (CFL) condition for Eq. (42). The term 1 + α is due to the
contribution of the source term C. The second condition is the numerical stability condition for the Euler’s method
for Eq. (69).

C. Boundary Condition and Characteristic Equations

To solve for Eq. (39), we need the information on the system boundaries. We can write the periodic boundary condition
(25) in a component form as




ṁ (0, t)

p0 (0, t)

T0 (0, t)



 =




I1

I2

I3



y1,j+1 =




g1 (ym,j+1,uj+1)

g2 (ym,j+1,uj+1)

g3 (ym,j+1,uj+1)



 (73)

where Ik, k = 1, 2, 3, is a k-th row vector of the 3 × 3 identity matrix, and j = 1, 2, . . . , n− 1 denotes the time index
such that tj = j−1

n−1T and yij = y (xi, tj). We note that the mass flow is generally conserved so that

g1 (ym,j+1,uj+1) = I1ym,j+1 (74)

At the incoming boundary x = 0, i = 1 so that the Eq. (37) cannot admit a positive wave which would require
the solution to include a point upstream of x = 0 that is nonexistent. Since there is only one negative wave, only the
negative wave speed characteristic equation (41) is admitted. Using the Euler’s method, we combine Eq. (41) with the
last two components of the boundary condition (73) so that




I2

I3

Ψ3 (y1j , x1)



y1,j+1 −




g2 (ym,j+1,uj+1)

g3 (ym,j+1,uj+1)

0



 =




01×3

01×3

Ψ3 (y1j , x1)



y1j

−
Λ− (y1j , x1)∆t

∆x




01×3

01×3

Ψ3 (y1j , x1)



 (y2j − y1j) −




01×3

01×3

Ψ3 (y1j , x1)



∆tB (y1j , x1) (75)
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where 01×3 is the 1 × 3 zero row vector.
We next consider the boundary at x = L, i = m. The situation is now reverse whereby the solution can only admit

the two positive eigenvalue characteristic equations (39) and (40) along with the first component of the boundary
condition (73). These three equations are written in a matrix form as




Ψ1 (ym−1,j , xm−1)

Ψ2 (ym−1,j , xm−1)

I1



ym,j+1 −




01×3

01×3

I1



y1,j+1 =




Ψ1 (ym−1,j , xm−1)

Ψ2 (ym−1,j , xm−1)

01×3



ymj

−
Λ+ (ym−1,j , xm−1)∆t

∆x




Ψ1 (ym−1,j , xm−1)

Ψ2 (ym−1,j , xm−1)

01×3



 (ymj − ym−1,j)

−




Ψ1 (ym−1,j , xm−1)

Ψ2 (ym−1,j , xm−1)

01×3



∆tB (ym−1,j , xm−1) (76)

Equations (75) and (76) are nonlinear at the time step tj+1 due to the boundary condition (73) and also coupled
together through the term y1,j+1. Solving for y1,j+1 from Eq. (75) and substituting into Eq. (76) then yield






Ψ1 (ym−1,j , xm−1)

Ψ2 (ym−1,j , xm−1)

I1




ym,j+1 −






01×3

01×3

I1











I2

I3

Ψ3 (y1j , x1)






−1 




g2 (ym,j+1,uj+1)

g3 (ym,j+1,uj+1)

01×3




 =






Ψ1 (ym−1,j , xm−1)

Ψ2 (ym−1,j , xm−1)

01×3




ymj −

Λ+ (ym−1j , xm−1) ∆t

∆x






Ψ1 (ym−1,j , xm−1)

Ψ2 (ym−1,j , xm−1)

01×3




 (ymj − ym−1,j)

−




Ψ1 (ym−1,j , xm−1)

Ψ2 (ym−1,j , xm−1)

01×3



∆tB (ym−1,j , xm−1) +




01×3

01×3

I1








I2

I3

Ψ3 (y1j , x1)





−1 


01×3

01×3

Ψ3 (y1j , x1)



y1j

−




01×3

01×3

I1








I2

I3

Ψ3 (y1j , x1)





−1

Λ− (y1j , x1)∆t

∆x




01×3

01×3

Ψ3 (y1j , x1)



 (y2j − y1j)

−




01×3

01×3

I1








I2

I3

Ψ3 (y1j , x1)





−1 


01×3

01×3

Ψ3 (y1j , x1)



∆tB (y1j , x1) (77)

Equation (77) now becomes only a nonlinear function of ym,j+1 and uj+1. An iterative method is implemented to
search for the zero solution of ym,j+1 using information from the previous time step. To solve Eq. (77), the boundary
control vector u must be determined for a given time history of the auxiliary controlV by integrating Eq. (69). Once
ym,j+1 is determined, then ym,j+1 is computed from Eq. (76). Thus, the information at the system boundaries is now
known and then can be used to compute all the information at the interior points by integrating Eq. (42) forward in
time.

D. Shock Capturing

Flow with shocks in a closed-loop transport systems pose a significant challenge in that a discontinuous solution of the
Euler equations must be found that can predict when and where a shock structure would arise. To further complicate
the solution, the discontinuous solution must also satisfy the nonlinear boundary condition (25). Most shock capturing
schemes are designed for the conservation form of the Euler equations because the flux variables are conserved across a
shock structure. First-order shock capturing schemes such as Lax-Friedrichs and Lax-Wendroff schemes with artificial
viscosity are commonly used to provide unique entropy solutions that define physical shock structures.
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Herein, we present a shock capturing method for the non-conservation form of the Euler equations. Toward that
end, if the flow in a closed-loop transport system is transitioned from subsonic to supersonic, the critical flow condition
at Mach 1 exists at the minimum cross sectional areaA∗, or the throat area. The ensuing supersonic flow will encounter
a normal shock formation at some point farther downstream in the flow from the throat area. In this situation, the flow
in the closed-loop transport system can be divided into three regions: 1) region I is defined by 0 ≤ x < L∗ wherein
the flow is entirely subsonic, 2) region II is defined by L∗ < x ≤ L−

S wherein the flow is entirely supersonic, and
3) region III is defined by L−

S < x ≤ L wherein the flow is entirely subsonic. The discontinuous solution across the
shock region L−

S < x ≤ L+
S is defined by the Rankine-Hugoniot relationship

(
F+ − F−

)
= V

(
U+ − U−

)
(78)

which can also be written as (
b+y+ − b−y−

)
= V

(
a+y+ − a−y−

)
(79)

where the ± sign denotes x = L+
S and x = L−

S , V is the speed of the moving shock, and

a (y) =





1
u

0 0

1 0 0

0 − A

(1+ γ−1
2 M2)

γ
γ−1

ṁcp

u



 b (y, x) =





1 0 0

0
A(1+γM2)

(1+ γ−1
2 M2)

γ
γ−1

0

0 0 ṁcp



 (80)

To obtain a physical solution, the entropy condition requires that

M+ −
V

c+
=

√√√√ 2 + (γ − 1)
(
M− − V

c−

)2

2γ
(
M− − V

c−

)2
− (γ − 1)

< 1 (81)

We note that for a standing shock, the following relationship applies

y+ =
(
b+

)−1
b−y− (82)

where
(
b+

)−1
b− =




1 0 0

0 r 0

0 0 1



 (83)

r =

[
γ+1
2 (M−)

2

1 + γ+1
2 (M−)2

] γ
γ−1 [

2γ

γ + 1

(
M−

)2
−
γ − 1

γ + 1

]− 1
γ−1

< 1 (84)

The shock location LS is determined by matching the flow conditions at the boundaries between the flow regions
in order to satisfy the nonlinear forced periodic boundary condition (25). Initially, we assume a standing shock whose
location is known. At each subsequent time step, an iterative solution is performed to locate the shock. Since the mass
flow and enthalpy conservation prevails at the boundaries of these regions, the shock location is primarily a function
of the stagnation pressure relationship and is found by determining x = LS that satisfies the following stagnation
pressure balance equation

∆p0,I + ∆p0,II + ∆p0,S + ∆p0,III = g2 (y (L, t) ,u) − p0 (L, t) (85)

where
∆p0,I = p0 (0, t) − p0 (L∗, t) (86)

∆p0,II = p0 (L∗, t) − p0

(
L−

S , t
)

(87)

∆p0,S = p0

(
L−

S , t
)
− p0

(
L+

S , t
)

= −
V

b+
22

(
ṁ+ − ṁ−

)
+

(
1 −

b−22
b+
22

)
p−0 (88)

∆p0,III = p0

(
L+

S , t
)
− p0 (L, t) (89)
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To solve for flow regions I and II, an additional boundary condition is imposed at the throat area that relates the
critical mass flow to the stagnation pressure and temperature as follows:

ṁ (L∗, t) =

√
γ

RT0 (L∗, t)
p0 (L∗, t)A∗

(
γ + 1

2

)− γ+1
2(γ−1)

(90)

This boundary condition together with two characteristic boundary conditions for positive wave speeds completely
define the boundary conditions at the throat area. Once the initial guess of the shock location at the current time step
is found, the normal shock speed can be computed from the shock locations at the current and previous time steps as

V =
LS (t) − LS (t − ∆t)

∆t
(91)

Equations (79), (85), and (91) are then iterated until the shock location LS converges. The solution for the entire
transonic flow in the closed-loop transport system is then completely established.

IV. Numerical Simulation

A. Closed-Circuit Wind Tunnel Model

The present computational method for a closed-loop transport system is applied to model fluid flow in a closed-
circuit wind tunnel. Fig. 2 illustrates the NASA Ames 11-Foot Transonic Wind Tunnel (11-Ft TWT). Fluid flow is
recirculated through a closed-circuit duct by a compressor that delivers air flow to a test section at a desired air speed
for aerodynamic testing. The compressor is considered to be a key component of a wind tunnel system designed to
match wind tunnel pressure losses due to fluid viscous losses. Fig. 3 illustrates a typical wind tunnel compressor. Fluid
flow through alternating rows of stator and rotor blades within the compressor imparts a tangential velocity component
in the flow. The kinetic energy associated with this swirl flow is then converted into a potential energy that creates a
pressure rise across the compressor. The rotor blades are driven by a set of drive motors. In addition, a compressor
in a wind tunnel may be equipped with variable-geometry inlet guide vanes designed to adjust the stagnation pressure
rise at a constant compressor speed. The inlet guide vanes may have adjustable trailing edge flaps to change the air
tangential velocity. Changes in the aerodynamic condition in a wind tunnel is thus accomplished by changing the
compressor speed and the inlet guide vane flap angle. These two quantities are often referred to as compressor control
inputs. Fig. 4 is a plot of the 11-Ft TWT Mach number envelope as a function of the compressor control inputs.

Fig. 2 - Closed-Circuit Wind Tunnel (NASA Ames 11-Ft TWT)

Fig. 3 - Wind Tunnel Compressor
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Fig. 4 - NASA Ames 11-Ft TWT Mach Number Envelope

The flow in a wind tunnel may be assumed to be 1-D flow since we are interested in unsteady, spatially averaged
flow through any given cross section of the wind tunnel. This information is useful for studying the time response
of the flow condition in the test section due to control inputs from the drive motors and the inlet guide vane flap
angle. Equation (22) is used to model this 1-D unsteady flow. The friction factor f used in Eq. (22) is determined
experimentally from wind tunnel measurements. The model also includes the heat transfer process taken place in the
compressor and the aftercooler. We assume a perfect heat transfer process whereby the heat generated by the enthalpy
increase across the compressor is completely removed by the aftercooler.

The forcing function g describes the behavior of the compressor through the boundary control vector u =[
ω θ

]T

where ω is the compressor speed and θ is the inlet guide vane flap angle. The compressor is a fluid
device so the conservation of mass, momentum, and energy is applicable. The mass flow through the compressor must
be constant. The stagnation pressure and stagnation temperature rises are due to the work input supplied by the drive
motors. Let x = 0 be the compressor exit station and x = L be the compressor inlet station. Then, the performance
of a turbomachine is generally described by the following similitude relationship11

p0 (0, t)

p0 (L, t)
= f (ṁc,ωc, θ) (92)

T0 (0, t)

T0 (L, t)
= f

(
p0 (0, t)

p0 (L, t)
, ṁc,ωc

)
(93)

where ṁc is the corrected mass flow and ωc is the corrected speed defined as

ṁc = ṁ (L, t)
p0,ref

p0 (L, t)

√
T0 (L, t)

T0,ref
(94)

ωc = ω

√
T0,ref

T0 (L, t)
(95)

and p0,ref and T0,ref are some reference total pressure and total temperature.
Using an empirical model, we obtain the forcing function g in the nonlinear forced periodic boundary condition

(25) for the wind tunnel model as

g (y (L, t) ,u) =





ṁ (L, t)

p0 (L, t)

(

1 +
4∑

i=2

2∑

j=0
cijθ

jωi
c

)

b1 − b2
ṁc

3

i=1

2

j=0
dijθjωi

c





T0 (L, t)
{

1 + b3ωc

ṁc

[
p0(0,t)
p0(L,t) − 1

]}




(96)
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where bi, cij , and dij are empirical coefficients derived from experimental compressor performance measurements as
shown in Fig. 5.

Equation (27) describes the time-varying process of the boundary control as influenced by the dynamics of the
auxiliary process encapsulated by the transition function f and the auxiliary control vectorV. The coupling with Eq.
(22) is due to the existence of the transport vectors y (0, t) and y (L, t) at the system boundaries. In particular, for the
wind tunnel model, the drive motors and the inlet guide vane systems impose dynamic constraints on the compressor
speed and the inlet guide vane flap angle. In particular, the torque equation for the drive motors is as follows:

ω̇ =
amRr (ωs − ω)

bm (ωs − ω)2 + cmRr (ωs − ω) + dmR2
r

− em [p0 (0, t) − p0 (L, t)] (97)

where Rr is a rotor resistance which controls the motor drive speed; ωs is the synchronous speed; and am, bm, cm,
dm, and em are some parameters.
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Fig. 5 - Compressor Pressure Ratio

Similarly, the dynamics of the inlet guide vane system is described by the following equation

θ̇ = q (L, t) (aiθ + bi) + ciVa (98)

where Va is a field voltage that controls the inlet guide vane system; and ai, bi, and ci are some parameters.

In the context of Eq. (27), the boundary control vector u =
[
ω θ

]T

is dynamically constrained by Eqs. (97)

and (98) and is controlled by the auxiliary control vector v =
[

Rr Va

]T

.

B. Results

A simulation is conducted to compute the test section Mach number transition fromMach 0.6 to Mach 0.9 in the 11-Ft
TWT. The wind tunnel model is discretized into 221 nodes as shown in Fig. 6.

Compressor Exit
x=0 Compressor Inlet

x=795 ft 

Test Section
x=470 ft

Fig. 6 - Wind Tunnel Discretization
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The step size ∆x = 3.6 ft is chosen so that important features of the wind tunnel such as the aftercooler and test
section positions are captured in the spatial discretization. The simulation time for the Mach number transition is about
2 minutes. The time step ∆t = 0.001 sec is used in order to satisfy the CFL condition (72). The time histories of the
compressor speed and the inlet guide vane flap angle during the Mach number transition from 0.6 to 0.9 are plotted in
Fig. 7. The transition takes place over a 120-sec interval. At the beginning of the transition, the inlet guide vane flap
angle is adjusted while the compressor speed is held constant at 455 rpm. A new compressor speed set point of 590
rpm is then sought while the inlet guide vane flap angle is maintained constant at 19.5◦. Once the compressor speed
is stabilized, the inlet guide vane flap angle is adjusted in a closed-loop feedback mode using the test section Mach
number error as a feedback variable. The ripples at the beginning of the final interval are due to a compressor speed
proportional and integral feedback control implemented in the simulation.
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Fig. 7 - Compressor Speed and Inlet Guide Vane Flap Angle Responses

The corresponding inlet guide vane field voltage and the drive motor rotor resistance that control the motion of the
compressor speed and the inlet guide vane flap angle are plotted in Fig. 8.
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Fig. 8 - Drive Motor Rotor Resistance and Inlet Guide Vane Motor Voltage

Fig. 9 illustrates the test sectionMach number response computed using the wave-splitting finite-differencemethod
as compared with the wind tunnel test data. An excellent agreement between the computed test section Mach number
and the test data is observed.

The complete solution of the Euler equations are plotted in Figs. 10 to 13. The Mach number distribution in the
wind tunnel is shown in Fig. 10, showing the peaked Mach number in the test section. Elsewhere in the wind tunnel,
the Mach number is nominal low and in the upper incompressible range below a Mach number of 0.35. The mass
flow distribution in the wind tunnel is plotted in Fig. 11. It can be seen that the mass flow is essentially constant at all
locations in the wind tunnel.
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Fig. 10 - Mach Number Distribution

Fig. 11 - Mass Flow Distribution
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Fig. 12 is a plot of the stagnation pressure distribution in the wind tunnel. It is always decreasing in the x-direction
due to viscous losses in the flow. The stagnation temperature distribution is plotted in Fig. 13. It can be seen that
the stagnation temperature is almost constant throughout the wind tunnel except in the region between the compressor
exit and the aftercooler where the heat transfer process takes place. As the Mach number increases, the stagnation
temperature at the compressor exit rises due to a greater work input from the drive motors. This work input must be
removed by the aftercooler in order to maintain a stable stagnation temperature in the test section for aerodynamic
testing. In reality, the work input is not always completely removed by the aftercooler especially at a high supersonic
flow in the test section. However, for subsonic flow, the assumption of a perfect heat transfer is quite reasonable.

Fig. 12 - Stagnation Pressure Distribution

Fig. 13 - Stagnation Temperature Distribution

Fig. 14 illustrates the test section Mach number response computed by the half-point discretization of the charac-
teristic matrices according to Eqs. (48) and (49). The agreement between the current discretization and the half-point
discretization is quite good. However, it can be seen that the half-point method did not quite converge to the correct
Mach number as the current method. This slight discrepancy is due to the inconsistency in the space discretization.
The advantage with the current scheme is that the characteristic matrices are evaluated using only information at one
grid point whereas the half-point scheme requires information at two grid points. Thus, computationally, the current
method is twice as less expensive than the half-point method.
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To demonstrate the shock capturing method, a simulation of transonic flow in the wind tunnel is conducted. The
Mach number in the test section is maintained at Mach 1.2 at all times and the inlet guide vane flap angle is adjusted
from 10o to 4o corresponding to the Mach 1.4 setting. Since the Mach number in the test section is dictated by the area
ratio between the test section and the nozzle throat, without adjusting the flexible nozzle, the effect of the inlet guide
vane adjustment is to cause the normal shock to move downstream of the test section. To compute the shock location,
four different number of grid points are used: 401, 801, 1601, and 3201. The plots of the computed shock location are
shown in Fig. 15.
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Fig. 15 - Computed Shock Location

The stair case plots are the computed shock locations at the grid points and the smooth curves are the plots of the
fitted shock locations using a first-order fitting method. Fig. 16 illustrates a well-known fact that in order to accurately
capture a shock location, the number of grid points must be sufficiently large. In fact, the shock location error is found
to be very close to half of the ∆x step size. Fig. 17 and 18 is the plot of the Mach number in the wind tunnel circuit
showing the final shock location moved to downstream of the test section.
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V. Conclusions

This paper has presented a computational method for a closed-loop fluid transport system based on the one-
dimensional unsteady Euler equations with a dissipative source term. A non-conservation form is formulated in terms
of the mass flow, the stagnation pressure, and the stagnation temperature. In this form, the mass flow and the stagnation
temperature are in fact conserved quantities. Therefore, the present non-conservation form represents an intermediate
model between the conserved variable formulation and the primitive variable formulation. The closed-loop transport
system is modeled via a nonlinear forced periodic boundary condition which in turn is coupled to a system of ordinary
differential equations that model an auxiliary system which actually controls the behavior of the fluid conditions at the
boundary. A wave-splitting, finite-difference upwind method is introduced. This scheme maintains a consistency with
the steady state discretization. A numerical simulation of unsteady flow in a closed-circuit wind tunnel demonstrates
an excellent agreement with experimental data. When compared with a half-point scheme, the present scheme shows
a better convergence. A shock capturing scheme is presented for the non-conservation form. A numerical simula-
tion shows the that shock location is very close to half of the spatial step size. Thus, to capture the shock location
accurately, a sufficient number of grid points must be used.
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